Автономная некоммерческая организация высшего образования «МОСКОВСКИЙ МЕЖДУНАРОДНЫЙ УНИВЕРСИТЕТ»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине ОП.12 Элементы высшей математики

38.02.07 Банковское дело

квалификация: специалист банковского дела

Фонд оценочных средств учебной дисциплины рассмотрен на заседании предметной (цикловой) комиссии преподавателей общепрофессионального учебного цикла

Фонд оценочных средств учебной дисциплины разработан на основе федерального государственного образовательного стандарта среднего профессионального образования (далее – ФГОС СПО) по специальности 38.02.07 Банковское дело, утвержденного приказом Министерства просвещения Российской Федерации от 14.11.2023 г. N 856 (зарегистрирован Министерством юстиции РФ 15.12.2023 г. N 76429) и с учетом Примерной основной образовательной программы по специальности 38.02.07 Банковское дело.

Внутренняя экспертиза: Заведующая УМУ Заметта Д.Н.

1.ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ по дисциплине ОП.12 Элементы высшей математики

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
1	Раздел 1. Линейная алгебра с элементами	ОК 01.	Текущий контроль в
	аналитической геометрии	OK 02.	форме:
	Тема 1.1. Матрицы, определители.	OK 03.	- тестирование;
	Тема 1.2. Системы линейных уравнений.	ОК 04.	- защиты
	Тема 1.3. Аналитическая геометрия на плоскости	ОК 07.	практических
2	Раздел 2. Линейное программирование	ОК 09.	занятий;
	Тема 2.1. Общая постановка задачи линейного	ПК 1.1.	Экспертное
	программирования Тема 2.2. Решение задач линейного	ПК 1.4.	наблюдение и оценка
	программирования графическим методом	ЛР1- ЛР 21	в процессе
3	Раздел 3. Теория пределов		выполнения:
	Тема 3.1. Предел функции. Непрерывность		– практических
	функции		занятий
4	Раздел 4. Дифференциальное и интегральное		– заданий по
	исчисление		самостоятельной
	Тема 4.1. Производная функции		работе;
	Тема 4.2. Исследование функции с помощью		дифференцированн
	производной		ый зачет по
	Тема 4.3. Неопределённый интеграл		дисциплине
	Тема 4.4. Определённый интеграл		7

2. Планируемые результаты обучения

Код ОК, ПК	Умения	Знания
OK 01	-распознавать задачу и/или проблему в профессиональном и/или социальном контексте; -анализировать задачу и/или проблему и выделять её составные части; -определять этапы решения задачи; -выявлять и эффективно искать информацию, необходимую для решения задачи и/или проблемы; -составлять план действия; -определять необходимые ресурсы; -владеть актуальными методами работы в профессиональной и смежных сферах; -оценивать результат и последствия своих действий (самостоятельно или с помощью наставника)	-актуальный профессиональный и социальный контекст, в котором приходится работать и жить; -основные источники информации и ресурсы для решения задач и проблем в профессиональном и/или социальном контексте; -алгоритмы выполнения работ в профессиональной и смежных областях; -методы работы в профессиональной и смежных сферах; - структуру плана для решения задач; - порядок оценки результатов решения задач профессиональной деятельности.
OK 02	-определять задачи для поиска информации; -определять необходимые источники информации; -планировать процесс поиска; -структурировать получаемую информацию; -выделять наиболее значимое в перечне информации;	-номенклатура информационных источников, применяемых в профессиональной деятельности; -приемы структурирования информации; -формат оформления результатов поиска информации, современные средства и устройства информатизации;

	-опенирать практипаскию внашевост	-HONGTOV MY HAMMAHAHIMA H HAOPRONESSOO
	-оценивать практическую значимость результатов поиска; оформлять результаты	-порядок их применения и программное обеспечение в профессиональной
	поиска, применять средства информационных	деятельности в том числе с использованием
	технологий для решения профессиональных	цифровых средств;
	задач;	-знание основных понятий и методов теории
		комплексных чисел, линейной алгебры,
	-использовать современное программное обеспечение;	математического анализа
		математического анализа
	-использовать различные цифровые средства для решения профессиональных задач	
	решения профессиональных задач	-современная научная и профессиональная
		терминология;
	-применять современную научную	-возможные траектории профессионального
	профессиональную терминологию;	развития и самообразования;
	-определять и выстраивать траектории	-значение математики в профессиональной
OK 03	профессионального развития и	деятельности.
	самообразования;	-знание математического анализа
	-определять источники финансирования	информации, представленной различными
	enpegasini mere minin quinant permini	способами, а также методов построения
		графиков различных процессов
OK 04	организовывать работу коллектива и команды;	психологические основы деятельности
	взаимодействовать с коллегами, руководством,	коллектива, психологические особенности
	клиентами в ходе профессиональной	личности;
	деятельности	знание математических понятий и
		определений, способов доказательства
		математическими методами.
OK 07	соблюдать нормы экологической безопасности;	правила экологической безопасности при
	соблюдать принципы бережливого	ведении профессиональной деятельности;
	производства; определять направления	основные ресурсы, задействованные в
	ресурсосбережения в рамках профессиональной	профессиональной деятельности; пути
	деятельности по специальности;	обеспечения ресурсосбережения, принципы
		бережливого производства
OK 09	понимать общий смысл четко произнесенных	- правила построения простых и сложных
	высказываний на известные темы	предложений на профессиональные темы;
	(профессиональные и бытовые), понимать	- основные общеупотребительные глаголы
	тексты на базовые профессиональные темы;	(бытовая;
	участвовать в диалогах на знакомые общие и	и профессиональная лексика);
	профессиональные темы;	- лексический минимум, относящийся к
	строить простые высказывания о себе и о своей	описанию предметов, средств и процессов
	профессиональной деятельности;	профессиональной деятельности;
	кратко обосновывать и объяснять свои действия	- особенности произношения;
	(текущие и планируемые);	- правила чтения и составления текстов
	писать простые связные сообщения на знакомые	профессиональной направленности;
	или интересующие профессиональные темы.	знание математического анализа
		информации, представленной различными
		способами, а также методов построения
ПК	Правитинований онгите осуннастристия посметие	графиков различных процессов Знания:
1.1.	Практический опыт: осуществления расчетно-кассового обслуживания клиентов	_
1.1.	Умения: консультировать клиентов по вопросам	содержание и порядок формирования юридических дел клиентов;
	открытия банковских счетов, расчетным	порядок открытия и закрытия лицевых
	операциям;	счетов клиентов в валюте Российской
	оформлять договоры банковского счета с	Федерации и иностранной валюте;
	клиентами;	правила совершения операций по расчетным
	проверять правильность и полноту оформления	счетам, очередность списания денежных
	расчетных документов;	средств;
	открывать и закрывать лицевые счета в валюте	порядок оформления, представления, отзыва
	Российской Федерации и иностранной валюте;	и возврата расчетных документов;
L		

выявлять возможность оплаты расчетных документов исходя из состояния расчетного счета клиента, вести картотеку неоплаченных расчетных документов; оформлять выписки из лицевых счетов клиентов:

оформлять выписки из лицевых счетов клиентов; рассчитывать и взыскивать суммы вознаграждения за расчетное обслуживание; рассчитывать прогноз кассовых оборотов; составлять календарь выдачи наличных денег; рассчитывать минимальный остаток денежной наличности в кассе;

составлять отчет о наличном денежном обороте; устанавливать лимит остатков денежной наличности в кассах клиентов;

отражать в учете операции по расчетным счетам клиентов;

исполнять и оформлять операции по возврату сумм, неправильно зачисленных на счета клиентов;

использовать специализированное программное обеспечение для расчетного обслуживания клиентов.

порядок планирования операций наличностью;

порядок лимитирования остатков денежной наличности в кассах клиентов;

типичные нарушения при совершении расчетных операций по счетам клиентов

ПК Практический опыт:

1.4. осуществления межбанковских расчетов Умения:

исполнять и оформлять операции по корреспондентскому счету, открытому в подразделении Банка России; проводить расчеты между кредитными

организациями через счета ЛОРО и НОСТРО; контролировать и выверять расчеты по корреспондентским счетам;

осуществлять и оформлять расчеты банка со своими филиалами;

вести учет расчетных документов, не оплаченных в срок из-за отсутствия средств на корреспондентском счете;

отражать в учете межбанковские расчеты; использовать специализированное программное обеспечение для совершения межбанковских расчетов

Знания:

системы межбанковских расчетов;

порядок проведения и учет расчетов по корреспондентским счетам, открываемым в подразделениях Банка России;

порядок проведения и учет расчетов между кредитными организациями через корреспондентские счета (ЛОРО и НОСТРО);

порядок проведения и учет расчетных операций между филиалами внутри одной кредитной организации;

типичные нарушения при совершении межбанковских расчетов.

В соответствии с Программой воспитания обучающихся, способствующей развитию личностных результатов ЛР 1-21, оценка личностных результатов может быть произведена с применением следующих форм оценивания:

- персонифицированная (демонстрирующая достижения конкретного обучающегося);
- неперсонифицированная (характеризующая достижения в учебной группе, у конкретного педагогического работника, в образовательной организации в целом);
 - качественная (измеренная в номинативной шкале: есть/нет);
 - количественная (измеренная, например, в ранговой шкале: больше/меньше);
- интегральная (оцененная с помощью комплексных тестов, портфолио, выставок, презентаций);
 - дифференцированная (оценка отдельных аспектов развития).

При этом могут предусматриваться следующие методы оценивания:

- наблюдение;
- портфолио;

- экспертная оценка;
- стандартизованные опросники;
- проективные методы;
- самооценка;

анализ продуктов деятельности (проектов, практических, творческих работ).

3.Оценочные средства для текущего контроля

ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ПОДГОТОВКИ К ДИФФЕРЕНЦИРОВАННОМУ ЗАЧЕТУ

- 1. Матрицы. Основные понятия. Виды матриц.
- 2. Действия над матрицами.
- 3. Определитель матрицы, его свойства. Определитель 2-го и 3-го порядков.
- 4. Методы вычисления определителей матрицы.
- 5. Системы линейных алгебраических уравнений (СЛАУ).
- 6. Общий вид СЛАУ с тремя неизвестными, виды СЛАУ
- 7. Метод Крамера для решения системы линейных уравнений
- 8. Функция. Область определения и область значения функции
- 9. Способы задания функции
- 10. Основные элементарные функции, их свойства и графики
- 11. Свойства функции: периодичность, монотонность, ограниченность
- 12. Числовая последовательность. Предел последовательности
- 13. Основные теоремы о пределах.
- 14. Первый и второй замечательный пределы
- 15. Точки разрыва 1-го и 2-го рода
- 16. Производная. Геометрический и механический смысл производной
- 17. Производные основных элементарных функций
- 18. Исследование функции с помощью производной
- 19. Исследование функции и построение графика
- 20. Понятие о первообразной. Неопределенный интеграл
- 21. Основные свойства неопределенного интеграла
- 22. Метод непосредственного интегрирования в неопределенном интеграле
- 23. Метод интегрирования по частям и замены переменной в неопределенном интеграле
- 24. Задача о площади криволинейной трапеции
- 25. Определенный интеграл. Основные понятия и свойства
- 26. Формула Ньютона-Лейбница.
- 27. Применение определенного интеграла в геометрии и жизни
- 28. Комплексные числа. Основные понятия. Формы записи комплексных чисел.
- 29. Геометрический смысл комплексного числа
- 30. Действия над комплексными числами, заданными в алгебраической форме
- 31. Модуль и аргумент комплексного числа
- 32. Размещения, перестановки, сочетания
- 33. Формула Ньютона
- 34. Случайные события. Вероятность события
- 35. Роль дискретной математики в системе математических наук

Устный опрос — это средство контроля, организованное как специальная беседа преподавателя с обучающимся на темы, связанные с изучаемой дисциплиной, и рассчитанное на выяснение объема знаний, обучающегося по определенному разделу, теме, проблеме и т. п.

Критерии оценки устного опроса студентов:

Оценка «отлично»:

- глубокое и прочное усвоение материала темы или раздела;
- полные, последовательные, грамотные, логически излагаемые аргументированные ответы;
- демонстрация обучающимся знаний в объеме пройденной программы и дополнительно рекомендованной литературы;
- воспроизведение учебного материала с требуемой степенью точности.

Оценка «хорошо»:

- наличие несущественных ошибок, не достаточно аргументированные ответы на вопросы;
- демонстрация обучающимся знаний в объеме пройденной программы;
- четкое изложение учебного материала.

Оценка «удовлетворительно»:

- наличие несущественных ошибок в ответе, отсутствие аргументации, но достаточно грамотное и логичное изложение;
- демонстрация обучающимся недостаточно полных знаний по пройденной программе, отсутствие аргументации;
- не структурированное, не грамотное и не логичное изложение учебного материала при ответе.

Оценка «неудовлетворительно»:

- незнание материала темы или раздела;
- серьезные ошибки при ответе.

- 1. Найти производную функции $y = \sqrt{x^3} + \frac{5}{x^2} \frac{3}{x^3} + 2$
- 2. Найти производную функции $y = \sqrt[7]{x} \cdot \ln x$
- 3. Вычислить интеграл: $\int \sqrt{2x+1} dx$
- 4. Вычислить интеграл: $\int_{-\pi}^{0} x \cos x dx$
- 5. Решить систему по правилу Крамера:

5. Решить систему по прав
$$\begin{cases} x + y + z = 3 \\ x + y - z = 1 \\ x - y - z = -1 \end{cases}$$
6. Вычислить: $\lim_{x \to 0} (1 + 6x)^{\frac{1}{x}}$

БИЛЕТ № 2

- 1. Найти производную функции $y = \sin \sqrt{x}$
- 2. Найти производную функции $y = x^2$ · arctg x
- 3. Вычислить интеграл: $\int_{2\pi}^{2\pi} \sqrt{(5x+9)^3} dx$ 4. Вычислить интеграл: $\int_{0}^{2\pi} x \sin x dx$
- 5. Решить систему по правилу Крамера

$$\begin{cases} x + y + z = 4 \\ x + y - z = 2 \\ x - y - z = 0 \end{cases}$$

 $\begin{cases} x + y + z = 4 \\ x + y - z = 2 \\ x - y - z = 0 \end{cases}$ 6. Вычислить: $\lim_{x \to 3} \frac{x^2 - 6x + 9}{x^2 - 9}$

- 1. Найти производную функции $y = \frac{\cos x}{x}$
- 2. Найти производную функции $y = \frac{3x^2 2x 4}{2x 1}$
- 3. Вычислить интеграл: $\int \sqrt{(2x+1)^3} dx$
- 4. Вычислить интеграл: $\int_{1}^{\frac{\pi}{2}} (1-x) \sin x dx$
- 5. Решить систему по правилу Крамера

$$\begin{cases} x + y + z = 5 \\ x + y - z = 3 \\ x - y - z = 1 \end{cases}$$
6. Вычислить: $\lim_{x \to 0} \frac{\sin 5x}{6x}$

6. Вычислить:
$$\lim_{x\to 0} \frac{\sin 5x}{6x}$$

- 1. Найти производную функции $y = \frac{1 + \sqrt{x}}{1 \sqrt{x}}$
- 2. Найти производную функции $y = \frac{1}{3}x^3 \sin 2x$
- 3. Вычислить интеграл: $\int \sqrt{(10x-5)} dx$
- 4. Вычислить интеграл: $\int_{0}^{2} (2x-1)\cos x dx$
- 5. Решить систему по правилу Крамера:

$$\begin{cases} x + y + z = 3 \\ x + y - z = 1 \\ x - y - z = -1 \end{cases}$$
6. Вычислить: $\lim_{x \to \infty} \frac{7x + 4}{2x - 3}$

6. Вычислить:
$$\lim_{x \to \infty} \frac{7x + 4}{2x - 3}$$

БИЛЕТ № 5

- 1. Найти производную функции $y = \frac{\sin x}{x^2}$
- 2. Найти производную функции $y = \frac{x^2 + 4x 1}{5x + 3}$
- 3. Вычислить интеграл: $\int (5x+3)^{10} dx$
- 4. Вычислить интеграл: $\int xe^x dx$
- 5. Решить систему по правилу Крамера:

$$\begin{cases} x + y + z = 4 \\ x + y - z = 2 \\ x - y - z = 0 \end{cases}$$

5. Гешить систему по правилу
$$\begin{cases}
x + y + z = 4 \\
x + y - z = 2 \\
x - y - z = 0
\end{cases}$$
6. Вычислить: $\lim_{x \to 2} \frac{x^2 - 4}{2x^2 - 3x - 2}$

- 1. Найти производную функции $y = \sqrt{(5x^2 + 9)}$
- 2. Найти производную функции $y = (x^3 1)(x^2 + x + 1)$
- 3. Вычислить интеграл: $\int \frac{\sin(\ln x)}{x} dx$

- 4. Вычислить интеграл: $\int xe^{2x}dx$
- 5. Решить систему по правилу Крамера

$$\begin{cases} x + y + z = 5 \\ x + y - z = 3 \\ x - y - z = 1 \end{cases}$$

 $\begin{cases} x + y - z = 3 \\ x - y - z = 1 \end{cases}$ 6. Вычислить: $\lim_{x \to 0} \left(1 + \frac{1}{2x} \right)^{3x}$

БИЛЕТ № 7

- 1. Найти производную функции $y = \frac{1-x^2}{1+x^2}$
- 2. Найти производную функции $y = \sqrt{x}$ · ln x
- 3. Вычислить интеграл: $\int \frac{\cos(\ln x)}{x} dx$
- 4. Вычислить интеграл: $\int_{0}^{\pi} (1-x)\cos x dx$
- 5. Решить систему по правилу Крамера

$$2x-4y+9z = 28$$

$$7x+3y-6z = -1$$

$$7x+9y-9z = 5$$
6. Вычислить: $\lim_{x\to 0} \frac{\sin 3x}{2x}$

БИЛЕТ № 8

- 1. Найти производную функции $y = \frac{1-x^4}{1+x^4}$
- 2. Найти производную функции $y = x^2 \cdot \sin 4x$
- 3. Вычислить интеграл: $\int (10x+1)^{15} dx$
- 4. Вычислить интеграл: $\int_{0}^{\pi} (1-x) \sin x dx$
- 5. Решить систему по правилу Крамера:

$$\begin{cases} x + y + z = 3 \\ x + y - z = 1 \\ x - y - z = -1 \end{cases}$$

 $\begin{cases} x + y - z = 1 \\ x - y - z = -1 \end{cases}$ 6. Вычислить: $\lim_{x \to \infty} \frac{2x^2 + 3}{3x^2 + 4x + 1}$

- 1. Найти производную функции $y = \sqrt{x^3} + \frac{5}{x^2} \frac{3}{x^3} + 2$
- 2. Найти производную функции $y = \sqrt[7]{x}$ · $\ln x$
- 3. Вычислить интеграл: $\int \sqrt{2x+1} dx$
- 4. Вычислить интеграл: $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x dx$
- 5. Решить систему по правилу Крамера

$$\begin{cases} x + y + z = 3 \\ x + y - z = 1 \\ x - y - z = -1 \end{cases}$$

 $\begin{cases} x + y - z = 1 \\ x - y - z = -1 \end{cases}$ 6. Вычислить: $\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 8x + 15}$

БИЛЕТ № 10

- 1. Найти производную функции $y = \sin \sqrt{x}$
- 2. Найти производную функции $y = x^2$ · arctg x
- 3. Вычислить интеграл: $\int \sqrt{(5x+9)^3} dx$
- 4. Вычислить интеграл: $\int_{0}^{\infty} x \sin x dx$
- 5. Решить систему по правилу Крамера

$$\begin{cases} x + y + z = 4 \\ x + y - z = 2 \\ x - y - z = 0 \end{cases}$$

 $\begin{cases} x + y + z = 4 \\ x + y - z = 2 \\ x - y - z = 0 \end{cases}$ 6. Вычислить: $\lim_{x \to 0} \left(1 + \frac{2}{x} \right)^x$

- 1. Найти производную функции $y = \frac{\cos x}{x}$
- 2. Найти производную функции $y = \frac{3x^2 2x 4}{2x 1}$
- 3. Вычислить интеграл: $\int \sqrt{(2x+1)^3} dx$
- 4. Вычислить интеграл: $\int_{0}^{\infty} (1-x) \sin x dx$
- 5. Решить систему по правилу Крамера

$$\begin{cases} x + y + z = 5 \\ x + y - z = 3 \\ x - y - z = 1 \end{cases}$$

6. Вычислить: $\lim_{x\to 0} \frac{\sin 7x}{3x}$

БИЛЕТ № 12

- 1. Найти производную функции $y = \frac{1 + \sqrt{x}}{1 \sqrt{y}}$
- 2. Найти производную функции $y = \frac{1}{3}x^3 \sin 2x$
- 3. Вычислить интеграл: $\int \sqrt{(10x-5)} dx$
- 4. Вычислить интеграл: $\int_{0}^{\frac{\pi}{2}} (2x-1)\cos x dx$
- 5. Решить систему по правилу Крамера:

$$\begin{cases} x+y+z=3\\ x+y-z=1\\ x-y-z=-1 \end{cases}$$

6. Вычислить: $\lim_{x \to \infty} \frac{2x+3}{x^2+4}$

БИЛЕТ № 13

- 1. Найти производную функции $y = \frac{\sin x}{r^2}$
- 2. Найти производную функции $y = \frac{x^2 + 4x 1}{5x + 3}$
- 3. Вычислить интеграл: $\int_{0}^{\infty} (5x+3)^{10} dx$ 4. Вычислить интеграл: $\int_{0}^{\infty} xe^{x} dx$
- 5. Решить систему по правилу Крамера:

$$\begin{cases} x + y + z = 4 \\ x + y - z = 2 \\ x - y - z = 0 \end{cases}$$

 $\begin{cases} x + y + z = 4 \\ x + y - z = 2 \\ x - y - z = 0 \end{cases}$ 6. Вычислить: $\lim_{x \to 2} \frac{x^2 - 4x + 4}{x + 3}$

- 1. Найти производную функции $y = \sqrt{(5x^2 + 9)}$
- 2. Найти производную функции $y = (x^3 1)(x^2 + x + 1)$
- 3. Вычислить интеграл: $\int \frac{\sin(\ln x)}{x} dx$
- 4. Вычислить интеграл: $\int xe^{2x}dx$
- 5. Решить систему по правилу Крамера

$$\begin{cases} x+y+z=5\\ x+y-z=3\\ x-y-z=1 \end{cases}$$

$$\begin{cases} x + y + z = 5 \\ x + y - z = 3 \\ x - y - z = 1 \end{cases}$$
6. Вычислить: $\lim_{x \to 0} \left(1 + \frac{2}{x} \right)^{\frac{1}{x}}$

1. Найти производную функции
$$y = \frac{1-x^2}{1+x^2}$$

2. Найти производную функции
$$y = \sqrt{x} \cdot \ln x$$

3. Вычислить интеграл:
$$\int \frac{\cos(\ln x)}{x} dx$$

4. Вычислить интеграл:
$$\int_{0}^{\pi} (1-x)\cos x dx$$

$$2x-4y+9z = 28$$

$$7x+3y-6z = -1$$

$$7x+9y-9z = 5$$
6. Вычислить: $\lim_{x\to 0} \frac{\sin 5x}{2x}$

6. Вычислить:
$$\lim_{x\to 0} \frac{\sin 5x}{2x}$$

БИЛЕТ № 16

1. Найти производную функции
$$y = \frac{1-x^4}{1+x^4}$$

2. Найти производную функции
$$y = x^2 \cdot \sin 4x$$

3. Вычислить интеграл:
$$\int (10x+1)^{15} dx$$

4. Вычислить интеграл:
$$\int_{-\pi}^{\pi} (1-x) \sin x dx$$

$$\begin{cases} x+y+z=3\\ x+y-z=1\\ x-y-z=-1 \end{cases}$$

$$\begin{cases} x + y - z = 1 \\ x - y - z = -1 \end{cases}$$
6. Вычислить:
$$\lim_{x \to \infty} \frac{2x^2 + x + 3}{x^2 + 4}$$

1. Найти производную функции
$$y = \frac{1+\sqrt{x}}{1-\sqrt{x}}$$

2. Найти производную функции
$$y = \frac{1}{3}x^3 \sin 2x$$

3. Вычислить интеграл:
$$\int \sqrt{(10x-5)} dx$$

4. Вычислить интеграл:
$$\int_{0}^{\pi} (2x-1)\cos x dx$$

$$\begin{cases} x + y + z = 3 \\ x + y - z = 1 \\ x - y - z = -1 \end{cases}$$
6. Вычислить: $\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 1}$

6. Вычислить:
$$\lim_{x\to 1} \frac{x^2 - 3x + 2}{x^2 - 1}$$

- 1. Найти производную функции $y = \frac{\sin x}{x^2}$
- 2. Найти производную функции $y = \frac{x^2 + 4x 1}{5x + 3}$
- 3. Вычислить интеграл: $\int (5x+3)^{10} dx$
- 4. Вычислить интеграл: $\int xe^x dx$
- 5. Решить систему по правилу Крамера:

$$\begin{cases} x + y + z = 4 \\ x + y - z = 2 \\ x - y - z = 0 \end{cases}$$
6. Вычислить: $\lim_{x \to 0} (1 + x)^{\frac{2}{x}}$

БИЛЕТ № 19

- 1. Найти производную функции $y = \sqrt{(5x^2 + 9)}$
- 2. Найти производную функции $y = (x^3 1)(x^2 + x + 1)$
- 3. Вычислить интеграл: $\int \frac{\sin(\ln x)}{x} dx$
- 4. Вычислить интеграл: $\int xe^{2x}dx$
- 5. Решить систему по правилу Крамера

$$\begin{cases} x + y + z = 5 \\ x + y - z = 3 \\ x - y - z = 1 \end{cases}$$

- 1. Найти производную функции $y = \sin \sqrt{x}$
- 2. Найти производную функции $y = x^2$ · arctg x
- 3. Вычислить интеграл: $\int \sqrt{(5x+9)^3} dx$
- 4. Вычислить интеграл: $\int x \sin x dx$
- 5. Решить систему по правилу Крамера

$$x + y + z = 4$$

$$x + y - z = 2$$

$$x - y - z = 0$$

6. Вычислить:
$$\lim_{x\to\infty} \frac{4x+1}{x+3}$$

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков

Процедура проведения оценочных мероприятий для студентов очной формы обучения имеет следующие формы контроля качества подготовки:

- текущий (осуществление контроля за всеми видами аудиторной и внеаудиторной деятельности студента с целью получения первичной информации о ходе усвоения отдельных элементов содержания дисциплины);
- промежуточный (оценивается уровень и качество подготовки по конкретным разделам дисциплины).

Текущий контроль успеваемости предусматривает оценивание хода освоения дисциплин, промежуточная аттестация обучающихся - оценивание результатов обучения по дисциплине.

Проработка конспекта лекций и учебной литературы осуществляется студентами в течение всего семестра, после изучения новой темы. Дважды в семестр предусмотрена текущая аттестация в виде контрольных опросов и итоговая аттестация в виде зачета.

Студентам, пропускающим занятия, выдаются дополнительные задания - представить конспект пропущенного занятия, с последующим собеседованием по теме занятия.

Промежуточная аттестация по дисциплине проводится в форме дифференцированного зачета.

Зачет является заключительным этапом процесса формирования компетенций студента при изучении дисциплины или ее части и имеет целью проверку и оценку знаний студентов по теории и применению полученных знаний, умений и навыков.

Студентам на предоставляется право выбрать один из билетов. Время подготовки к ответу составляет 30 минут. По истечении установленного времени студент должен ответить на вопросы экзаменационного билета в изучении проблемы; иметь способность к интеграции знаний по проблеме, структурированию ответа, анализу существующих позиций в теории и практике; способен к адаптации знаний к условиям конкретной ситуации. В течение семестра работал последовательно, готовился к практическим занятиям систематически, задания

При оценке ответа студента на вопрос билета преподаватель руководствуется следующими критериями:

- полнота и правильность ответа;
- степень осознанности, понимания изученного;
- языковое оформление ответа.

Отметка «отлично» ставится, если студент полно излагает изученный материал, обнаруживает понимание специфики вопроса, дает правильное определение основных понятий социальной медицины; обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры, самостоятельно составленные;

показывает высокий уровень сформированности профессиональных компетенций. Ответ не содержит фактические ошибки.

Оценка «хорошо» ставится за правильное и глубокое усвоение программного материала, однако в ответе допускаются неточности и незначительные ошибки, как в содержании, так и форме построения ответа.

Оценка «удовлетворительно» свидетельствует о том, что студент знает основные, существенные положения учебного материала, но не умеет их разъяснять, допускает отдельные ошибки и неточности в содержании знаний и форме построения ответа.

Оценка «**неудовлетворительно**» ставится, если студент обнаруживает незнание большей части материала, неверно отвечает на вопрос, дает ответ, который содержательно не соотносится с поставленной задачей, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно излагает материал.

БАНК ТЕСТОВ ПО ДИСЦИПЛИНЕ

Общие сведения о тесте по дисциплине «Математика»

Цель разработки теста	Проверка качества освоения студентами учебной дисциплины
цель разработки теста	«Математика»
Назначение теста	Итоговый контроль знаний студентов дистанционной формы
пазначение теста	обучения по учебной дисциплине «Математика»
	от 8 до 10 верных ответов – оценка «Отлично»
Оценивание	от 6 до 7 верных ответов – оценка «Хорошо»
результатов	от 3 до 6 верных ответов – оценка «Удовлетворительно»
	от 0 до 2 верных ответов – оценка «Неудовлетворительно»
Время на выполнение	На выполнение теста отводится 90 минут
теста	

Распределения заданий по темам дисциплины

	Тема	1	2	3	4	5	6	7	8	9	10	Всего заданий
Результаты обучения	Колич. заданий по темам, % Колич. заданий по результатам обучения, %											
Знания	35	5	5	12	10	15	5	3	6	3	12	76
Умения	35	5	5	12	10	15	5	3	6	3	12	76
Навыки	30	5	5	16	10	16	5	4	6	4	16	87
Всего задан	ний	15	15	40	30	46	15	10	18	10	40	239

Параметры настройки теста

№	Наименование темы	Количество вопросов в замесе теста
1	Матрицы и определители	1
2	Системы линейных уравнений	1
3	Функции	1
4	Пределы	1
5	Производная	1

6	Применение производной к исследованию функций	1
7	Неопределенный интеграл	1
8	Определенный интеграл и его применение	1
9	Комплексные числа	1
10	Элементы теории вероятностей и математической	1
	статистики	

Всего:

10 тестовых заданий

TB	HB	Тип	Тестовое задание/Варианты ответов
Матрицы и	1	0	1 3 5
определители			Определитель 2 7 –8 равен:
			$\begin{vmatrix} -1 & -3 & 4 \end{vmatrix}$
			' '
			9
			40 -2
		+	24
Матрицы и	2	0	2 1 3
определители			
опредолители			Определитель 5 3 2 равен:
			1 4 3
			9
		+	40
			-2
			-21
Матрицы и	3	0	2 -1 3
определители			Определитель 5 3 2 равен:
			1 4 3
			9
			40
		+	66
		'	-21
Матрицы и	4	0	2 1 3
определители			
•			Определитель 2 -1 3 равен:
			1 5 2
			9
			40
		+	-2
7.5			-21
Матрицы и	5	0	-3 0 1
определители			Определитель -5 2 4 равен:
			0 3 7
			9
			40
			-2
		+	-21
L		1	

Матрицы и	6	0	1 4 3
определители		U	
определители			Определитель -1 6 3 равен:
			5 -1 2
		+	-4
			26
			27
			-3
Матрицы и	7	0	0 1 3
определители			Определитель 2 3 5 равен:
			3 5 7
		+	4
			-4
			27
			-3
Матрицы и	8	0	1 2 2
определители			Определитель 2 1 –2 равен:
			$\begin{bmatrix} 2 & -2 & 1 \end{bmatrix}$
			ı ı
			4
			-4
		+	-27
3.4		0	-3
Матрицы и	9	0	
определители			Определитель 0 2 1 равен:
			0 0 2
		+	4
			-4
			27
			-3
Матрицы и	10	0	1 1 -1
определители			
•			Определитель 2 -1 1 равен:
			4
			-4
			27
		+	-3
Матрицы и	11	0	1 1 1
определители			Определитель 5 7 8 равен:
			25 49 36
			12
		+	-50
			18
			36

Матрицы и	12	0	2 2 1
определители	12	U	3 2 1
определители			Определитель 2 5 3 равен:
			3 4 3
		<u>.</u>	
		+	8
			0
			-10
			-40
Матрицы и	13	0	3 4 -5
определители			Определитель 8 7 –2 равен:
_			
			2 -1 8
			8
		+	0
			-10
			-40
Матринууч	14	0	
Матрицы и	14	U	2 0 0
определители			Определитель 3 2 0 равен:
			$\begin{vmatrix} 0 & 7 & -1 \end{vmatrix}$
			8
			0
		+	-10
			-40
Матрицы и	15	0	2 0 0
определители			
опроденние			Определитель 0 5 0 равен:
			$\begin{vmatrix} 0 & 0 & -4 \end{vmatrix}$
			8
			0
			-10
	_	+	-40
Системы линейных	1	0	Решением системы $\begin{cases} 3x - 5y = 16, \\ 2x + y = 2; \end{cases}$ является пара
уравнений			Решением системы $2x + y = 2$:
			чисел:
		+	(2; -2)
			(1;5)
			(5;4)
			(2;1)
Системы линейных	2	0	Решением системы $\begin{cases} 4x - 2y = -6, \\ 6x + y = 11; \end{cases}$ является пара
уравнений			Решением системы $\{6x+y-11\}$ является пара
			чисел:
			(2; -2)
		+	(1;5)
			(5;4)
			(2;1)
Cyromove			
Системы линейных	3	0	
	3	0	
уравнений	3	0	Решением системы $\begin{cases} 3x + 2y = 7, \\ 4x - 5y = 40; \end{cases}$ является пара

			(2; -2)
			(1;5)
		+	(5;-4)
			(2;1)
Системы линейных	4	0	(2x-3y=1.
уравнений			Решением системы $\begin{cases} 2x - 3y = 1, \\ 3x + y = 7; \end{cases}$ является пара
<i>J</i> 1			(3x + y = 7)
			чисел:
			(2; -2)
			(1;5)
			(5;4)
		+	(2;1)
Системы линейных	5	0	
уравнений			Решением системы $\begin{cases} 7x - 5y = 7, \\ x + 2y = 1; \end{cases}$ является пара
урависиин			(x+2y=1;
			чисел:
			(2; 3)
		+	(1; 0)
		1	(-1; -1)
			(1; -3)
C	(0	
Системы линейных	6	U	Решением системы $\begin{cases} 3x - y = 3, \\ 3x - 2y = 0; \end{cases}$ является пара
уравнений			3x-2y=0;
			чисел:
		+	(2; 3)
		'	
			(1;0)
			(-1;-1)
			(1; -3)
Системы линейных	7	0	2x-3y=11,
уравнений			Решением системы $\begin{cases} 2x - 3y = 11, \\ 5x + y = 2; \end{cases}$ является пара
			чисел:
			(2; 3)
			(1; 0)
			(-1; -1)
		+	(1; -3)
Системы линейных	8	0	Решением системы $\begin{cases} 4x - 3y = -1, \\ x - 5y = 4; \end{cases}$ является пара
уравнений			Решением системы { является пара
			(x-3y-4,
			чисел:
			(2; 3)
			(1;0)
		+	(-1; -1)
			(1; -3)
Системы линейных	9	0	
уравнений			Решением системы $\begin{cases} 3x + 5y = 14, \\ 2x - 4y = -20; \end{cases}$ является пара
v 1 ···			(2x-4y=-20;
			чисел:
		+	(-2;4)
			(2; -4)
			(-1; -1)
			(1; -3)
	Ĭ		\^, ~/

Системы линейных	10	0	$\int 2x - y = 0,$
уравнений			Решением системы $\begin{cases} 2x - y = 0, \\ x + 3y = 7; \end{cases}$ является пара
			чисел:
			(-2; 4)
			(2; -4)
			(-1; -1)
		+	(1; 2)
Системы линейных уравнений	11	0	Решением системы $\begin{cases} x - y = -4, \\ 2x + y = -5; \end{cases}$ является пара
			чисел:
			(3; -1)
			(3;1)
		+	(-3;1)
			(-3; -1)
Системы линейных уравнений	12	0	Решением системы $\begin{cases} 3x - 5y = 13, \\ 2x + 7y = 81; \end{cases}$ является пара
			чисел:
		+	(16;7)
			(2;3)
			(3;-1)
			` '
			$\left(\frac{41}{22},\frac{12}{11}\right)$
Системы линейных	13	0	3x-4y=-6,
уравнений			Решением системы $\begin{cases} 3x - 4y = -6, \\ 3x + 4y = 18; \end{cases}$ является пара
уравнений			чисел:
уравнений			
уравнений		+	чисел: (16;7)
уравнений		+	чисел: (16;7) (2;3)
уравнений		+	чисел: (16;7) (2;3) (3;-1)
уравнений		+	чисел: (16;7) (2;3) (3;-1)
			чисел: $(16;7)$ $(2;3)$ $(3;-1)$ $(\frac{41}{22};\frac{12}{11})$
уравнений Системы линейных уравнений	14	0	чисел: (16;7) (2;3) (3;-1)
Системы линейных	14		чисел: $(16;7)$ $(2;3)$ $(3;-1)$ $\left(\frac{41}{22};\frac{12}{11}\right)$ Решением системы $\begin{cases}5x+3y=12,\\2x-y=7;\end{cases}$ является пара чисел:
Системы линейных	14		чисел: $(16;7)$ $(2;3)$ $(3;-1)$ $\left(\frac{41}{22};\frac{12}{11}\right)$ Решением системы $\begin{cases}5x+3y=12,\\2x-y=7;\end{cases}$ является пара $(16;7)$
Системы линейных	14		чисел: $(16;7)$ $(2;3)$ $(3;-1)$ $\left(\frac{41}{22};\frac{12}{11}\right)$ Решением системы $\begin{cases}5x+3y=12,\\2x-y=7;\end{cases}$ является пара чисел:
Системы линейных	14		чисел: $(16;7)$ $(2;3)$ $(3;-1)$ $\left(\frac{41}{22};\frac{12}{11}\right)$ Решением системы $\begin{cases}5x+3y=12,\\2x-y=7;\end{cases}$ является пара $(16;7)$
Системы линейных	14	0	чисел: $(16;7)$ $(2;3)$ $(3;-1)$ $\left(\frac{41}{22};\frac{12}{11}\right)$ Решением системы $\begin{cases}5x+3y=12,\\2x-y=7;\end{cases}$ чисел: $(16;7)$ $(2;3)$
Системы линейных	14	0	чисел: $(16;7)$ $(2;3)$ $(3;-1)$ $\left(\frac{41}{22};\frac{12}{11}\right)$ Решением системы $\begin{cases}5x+3y=12,\\2x-y=7;\end{cases}$ является пара чисел: $(16;7)$ $(2;3)$ $(3;-1)$
Системы линейных уравнений		+	чисел: $(16;7)$ $(2;3)$ $(3;-1)$ $\left(\frac{41}{22};\frac{12}{11}\right)$ Решением системы $\begin{cases} 5x+3y=12,\\2x-y=7;\end{cases}$ является пара $(16;7)$ $(2;3)$ $(3;-1)$ $\left(\frac{41}{22};\frac{12}{11}\right)$ Решением системы $\begin{cases} 2x+3y=7,\\4x-5y=2;\end{cases}$ является пара
Системы линейных уравнений		+	чисел: $(16;7)$ $(2;3)$ $(3;-1)$ $\left(\frac{41}{22};\frac{12}{11}\right)$ Решением системы $\begin{cases} 5x+3y=12,\\2x-y=7;\end{cases}$ является пара $(16;7)$ $(2;3)$ $(3;-1)$ $\left(\frac{41}{22};\frac{12}{11}\right)$ Решением системы $\begin{cases} 2x+3y=7,\\4x-5y=2;\end{cases}$ является пара $4x-5y=2;$ чисел:
Системы линейных уравнений		+	чисел: $(16;7)$ $(2;3)$ $(3;-1)$ $\left(\frac{41}{22};\frac{12}{11}\right)$ Решением системы $\begin{cases} 5x+3y=12,\\2x-y=7; \end{cases}$ является пара $(16;7)$ $(2;3)$ $(3;-1)$ $\left(\frac{41}{22};\frac{12}{11}\right)$ Решением системы $\begin{cases} 2x+3y=7,\\4x-5y=2; \end{cases}$ является пара

			(3;-1)
		+	
			$\left(\frac{41}{22},\frac{12}{11}\right)$
Функции	1	0	Область определения функции $y = \frac{4}{x+2}$ имеет вид:
			$x \neq 2$
		+	$x \neq -2$
			$x \neq \pm 2$
			<i>x</i> ≠ 4
Функции	2	0	Область определения функции $y = \sqrt{x-2}$ имеет вид:
		+	$x \ge 2$
			$x \ge -2$
			<i>x</i> ≤2
			<i>x</i> ≤ −2
Функции	3	0	Об ласть определения функции $y = \sqrt{2x+4}$ имеет вид:
			<i>x</i> ≥2
		+	$x \ge -2$
			<i>x</i> ≤2
			<i>x</i> ≤ −2
Функции	4	0	Область определения функции $y = \frac{3x}{x-4}$ имеет вид:
			$x \ge 4$
			$x \le 4$
			$x \neq \pm 2$
		+	$x \neq 4$
Функции	5	0	Область определения функции $y = \sqrt{4x - 16}$ имеет
			вид:
			$x \neq 4$
			$x \neq -4$
		+	$x \ge 4$
			<i>x</i> ≤ 4
Функции	6	0	Область определения функции $y = \sqrt{12 - 3x}$ имеет
			вид:
			$x \neq 4$
			$x \neq -4$
		1	$x \ge 4$
Филип	7	+	x ≤ 4
Функции	/	0	Область определения функции $y = \frac{2x}{x^2 - 9}$ имеет вид:
			$x \neq 3$
			$x \neq -3$
			$x \ge 9$
Ф	0	+	$x \neq \pm 3$
Функции	8	0	Область определения функции $y = \sqrt{16 - 4x}$ имеет
			вид:
			$x \neq 4$
			$x \neq -4$

			$x \ge 4$
		+	$x \le 4$
Функции	9	0	Область определения функции $y = \frac{x}{4x - 16}$ имеет
			вид:
		+	$x \neq 4$
			$x \neq -4$
			$x \ge 4$
			$x \le 4$
Функции	10	0	Область определения функции $y = \sqrt{4x + 16}$ имеет вид:
			$x \neq 4$
			$x \neq -4$
		+	$x \ge -4$
			$x \le 4$
Функции	11	0	Если f(-x)=f(x), то функция f(x):
		+	Чётная
			Нечётная
			Периодичная
			Общего вида
Функции	12	0	Если f(-x)=-f(x), то функция f(x):
· · · · · · · · · · · · · · · · · · ·			Чётная
		+	Нечётная
			Периодичная
			Общего вида
Функции	13	0	Функция f(x) называется чётной, если:
•		+	f(-x)=f(x)
			f(-x)=-f(x)
			f(-x)=f(-x)
			f(x+T)=f(x)=f(x-T)
Функции	14	0	Функция f(x) называется нечётной, если:
			f(-x)=f(x)
		+	f(-x)=-f(x)
			f(-x)=f(-x)
			f(x+T)=f(x)=f(x-T)
Функции	15	0	Ф ункция $y = x^3 + 2x$ является:
		+	чётной нечётной
			периодичной общего вида
Функции	16	0	
Ұ упкции	10	U	Ф ункция $y = 2x^2 - 4$ является:
		+	чётной
			нечётной
			периодичной
			общего вида
Функции	17	0	Ф ункция $y = x^4 - 3x^3 + 1$ является:
			чётной
			нечётной

			периодичной
		+	общего вида
Функции	18	0	Функция $y = x^5 - 4x$ является:
			чётной
		+	нечётной
		•	периодичной
			общего вида
Функции	19	0	График чётной функции симметричен
т у пиции		v	относительно:
			оси OX
		+	оси ОУ
		· ·	начала координат
			точки экстремума
Функции	20	0	График нечётной функции симметричен
Функции	20	U	относительно:
			оси ОХ
			оси ОУ
		+	начала координат
			•
Функции	21	0	точки экстремума Функция f(x) называется периодичной, если:
Функции	21	U	f(-x)=f(x)
			f(-x) = -f(x)
			f(-x) = f(-x) $f(x+T) = f(x) - f(x) - T$
ж	22	+	f(x+T)=f(x)=f(x-T)
Функции	22	0	График функции $y = x^5 - 2x^3 + 6x$ симметричен
			относительно: оси ОХ
			оси ОУ
		+	начала координат
ж.	22	•	точки экстремума
Функции	23	0	График функции $y = x^6 - 5x^4$ симметричен
			относительно: оси ОХ
			оси ОУ
		+	
			начала координат
Ф	24	0	точки экстремума
Функции	24	U	Функция $y = 2x^3 - x^2$ является:
			чётной
			нечётной
			периодичной
		+	общего вида
Функции	25	0	Ф ункция $y = 9x^3 - 4x$ является:
			чётной
		+	нечётной
			периодичной
			общего вида
Функции	26	0	Для построения графика функции y=x³+2, нужно
			график функции y=x3 сдвинуть на 2 единицы

			вниз
		+	вверх
			влево
			вправо
Функции	27	0	Для построения графика функции $y=(x-2)^3$, нужно график функции $y=x^3$ сдвинуть на 2 единицы
			вниз
			вверх
			влево
		+	вправо
Функции	28	0	Для построения графика функции $y=x^2-3$, нужно график функции $y=x^2$ сдвинуть на 3 единицы
		+	вниз
			вверх
			влево
			вправо
Функции	29	0	Для построения графика функции $y=(x+3)^3$, нужно график функции $y=x^3$ сдвинуть на 3 единицы
			вниз
			вверх
		+	влево
			вправо
Функции	30	0	Для построения графика функции $y=x^3+4$, нужно график функции $y=x^3$ сдвинуть на 4 единицы
			ВНИЗ
		+	вверх
			влево
Функции	31	0	Вправо Для построения графика функции у= $x^3 - 1$, нужно график функции у= x^3 сдвинуть на 1 единицу
		+	вниз
			вверх
			влево
			вправо
Функции	32	0	Для построения графика функции $y=(x-3)^2$,
			нужно график функции у=x ² сдвинуть на 3 единицы
			ВНИЗ
			вверх
		1	влево
Фунуль	22	+	вправо
Функции	33	0	Для построения графика функции $y=\sin x+1$, нужно график функции $y=\sin x$ сдвинуть на 1
			единицу вниз

		+	вверх
			влево
			вправо
Функции	34	0	<u> </u>
Функции		U	Для построения графика функции $y=\cos x-1$, нужно график функции $y=\cos x$ сдвинуть на 1
		+	единицу
			вниз
			вверх
			влево
Ф	25	Λ	вправо
Функции	35	0	Для построения графика функции $y = tgx + 1$, нужно
			график функции у= tgx сдвинуть на 1 единицу
			вниз
		+	вверх
			влево
			вправо
Функции	36	0	Для построения графика функции $y = (x-2)^3$
			для построения графика функции
			нужно график функции у=х³ сдвинуть на 2
			единицы
			вниз
			вверх
			влево
Ф	37	+ 0	вправо
Функции	37	U	Для построения графика функции $y=x^2-2$, нужно
			график функции y=x ² сдвинуть на 2 единицы
		+	вниз
			вверх
			влево
			вправо
Функции	38	0	$ (\dots, \pi)$
			$\operatorname{Sin}\left[x+\frac{1}{4}\right]$
			Для построения графика функции у= 47,
			$\frac{\pi}{4}$
			нужно график функции у= $\sin x$ сдвинуть на 4
			вниз
			вверх
		+	влево
			вправо
Функции	39	0	Для построения графика функции $y = \cos x + 2$,
			нужно график функции $y = \cos x$ сдвинуть на 2
			единицы
			вниз
		+	вверх
			влево
			вправо

Функции	40	0	$($ $\pi)$
			Для построения графика функции $y=\frac{ctg\left(x-\frac{\pi}{3}\right)}{3}$,
			Для построения графика функции у= 37,
			π
			нужно график функции $y=^{ctgx}$ сдвинуть на $\frac{\pi}{3}$ вниз
			вниз
			вверх
			влево
		+	вправо
Пределы	1	0	
пределы	1		Предел $\lim_{x\to 0} \frac{x-1}{2x^2-x-1}$ равен:
			Предел $x \to 0$ $2x^2 - x - 1$ равен:
			1
			3
			9
			34
Пределы	2	0	Предел $\lim_{x\to 1} (2x^2 - 3x + 4)$ равен:
_			Предел $x \to 1$ равен:
			1
			3
			9
			34
Пределы	3	0	$r^2 + 5$
1 / 1			Предел $\lim_{x\to 2} \frac{x^2+5}{x^2-3}$ равен:
			Предел $x \to 2$ $\chi = 3$ равен:
			1
			3
			9
			34
Пределы	4	0	$\lim_{x\to 3} (5x^2 - 6x + 7)$ равен:
			Предел $x \rightarrow 3$ равен:
			3
			9
			34
Пределы	5	0	Предел $\lim_{x\to 1} \frac{(x+3)(x-2)}{x+2}$ равен:
			Предел $x + 2$ равен:
			$-\frac{4}{3}$
			1
			10
			10 -6
Продолуч		Λ	
Пределы	6	0	$\lim_{x \to -2} \frac{x^2 - 4}{x + 2}$ равен:
			Предел $x \to -2$ $x + 2$ равен:
			4
			$-\frac{\cdot}{3}$
			1
			0
			(
Продолга	7	Λ	r (2 3 2 2 10)
Пределы	7	0	$\lim_{x\to 0} \left(3x^3 + x^2 + 8x + 10\right)$ равен:
	<u> </u>	<u>l</u>	Предел $x \to 0$ равен:

	1 1		T .
			$-\frac{4}{3}$
			$\left -\frac{1}{3} \right $
			1
			10
			-6
Продоли	8	0	$\lim_{x \to -1} ((x+3)(x-2))$ равен:
Пределы	0	U	$\lim_{x \to -1} ((x+3)(x-2))$
			Предел $x \rightarrow -1$
			$-\frac{4}{3}$
			$\left -\frac{1}{3} \right $
			1
			10
			-6
Продоли	9	0	$\lim_{x\to 2} \lim_{x\to 2} ((x^2-1)(x-3))$ равен:
Пределы	9	U	$\lim_{x \to 2} (x^2 - 1)(x - 3)$
			Предел х→2 `` равен:
			-3
			3
			-4
			4
Пределы	10	0	\(\int_{m} \cdot 1 \)
предсив	10	v	$\lim_{x\to 4} \frac{\lim_{x\to 4} \frac{\sqrt{x}+1}{\sqrt{x}-1}}{\sqrt{x}-1}$ равен:
			$x \rightarrow 4$ $\sqrt{x} - 1$
			-3
			3
			-4
			4
Пределы	11	0	Предел $\lim_{x \to 3} \frac{x-3}{x^2-9}$ равен:
		•	$\lim_{n \to \infty} \frac{n}{2}$
			Предел $x \to 3$ $x^2 - 9$ равен:
			0,75
			∞
			1
			1
			$\frac{}{6}$
Пределы	12	0	$\lim_{x \to -2} \frac{x^2 - 4}{x + 2}$ равен:
			lim
			Предел $x \to -2$ $x + 2$ равен:
		· · · · · · · · · · · · · · · · · · ·	-4
			0,2
			0
			1
Пределы	13	0	r^2 $6r + 0$
пределы	15	J	Предел $\lim_{x \to 3} \frac{x^2 - 6x + 9}{x^2 - 3x}$ равен:
			Предел $x \to 3$ $x^2 - 3x$ равен:
			-4
			0,2
			0
			1
Пределы	14	0	Предел $\lim_{x\to 5} \frac{x^2 - 8x + 15}{x^2 - 25}$ равен:
_			$\lim_{\epsilon \to \infty} \frac{1}{2} \frac{1}{2}$
			Предел $x \to 5$ $x^2 - 25$ равен:
			-4
			0,2
			0

			1
Продоли	15	0	
Пределы	13	U	Предел $\lim_{x \to -1,5} \frac{4x^2 - 9}{2x + 3}$ равен:
			Предел $x \to -1.5$ 2x + 3 равен:
			-4
			0,2
			0
			1
Пределы	16	0	3
I. sylvan			Предел $\lim_{x\to 3} \frac{3}{2x-6}$ равен:
			Предел х з 2х о равен:
			0,75
		+	∞
			1
			$\frac{1}{6}$
			6
Пределы	17	0	$\lim_{x\to 0} \frac{3}{x}$ Предел $\lim_{x\to 0} \frac{3}{x}$ равен:
I. sylvan			
			Предел х равен:
			0,75
		+	∞
			1
			$\frac{1}{6}$
			6
Пределы	18	0	. 4
Poderin	10		Предел $\lim_{x\to 0} \frac{4}{3x^2 + 2x}$ равен:
			Предел $x \to 0$ $5x + 2x$ равен:
			0,75
		+	∞
			1
			$\frac{1}{2}$
			$\frac{1}{6}$
Пределы	19	0	Предел $\lim_{x\to 0} \frac{2x^3 - 3x^2}{3x^3 - 4x^2}$ равен:
•			$\lim_{n \to \infty} \frac{2x}{2n^3} \frac{3x}{4n^2}$
			Предел $x \to 0$ $3x^3 - 4x^2$ равен:
			0,75
			∞
	-		1
			1
			$\frac{1}{6}$
Пределы	20	0	
пределы	20		Предел $\lim_{x\to 0} \frac{3}{x+5}$ равен:
			Предел $x \to 0$ $x + 5$ равен:
			0
		+	∞
	+	'	
	+		3
			$\left \frac{3}{8} \right $
			8
Прецепт	21	0	2
	41	U	lim
Пределы			
пределы			Предел $x \to \infty$ $x + 5$ равен:
пределы		+	$ \frac{\lim_{x\to\infty} \frac{3}{x+5}}{1} $ Предел равен:
пределы		+	0
пределы		+	

			$\frac{3}{8}$
			$\frac{-}{8}$
Пистопи	22	Λ	
Пределы	22	0	Предел $\lim_{x\to\infty} \frac{3}{2x-6}$ равен:
			Предел $x \to \infty$ $2x - 6$ развен.
			предел равен.
		+	0
			∞
			1
			$\frac{1}{6}$
Пределы	23	0	
пределы	25	U	$\lim_{x\to\infty} \frac{3}{x}$ Предел $\lim_{x\to\infty} \frac{3}{x}$ равен:
			Предел $^{x\to\infty} X$ равен:
		+	0
		'	
			∞
			1
			1
			$\frac{-}{6}$
Пределы	24	0	Предел $\lim_{x\to\infty} \frac{4}{3x^2+2x}$ равен:
P •/			$\lim \frac{1}{2^{2}+2}$
			Предел $x \to \infty$ $3x^2 + 2x$ равен:
		+	0
			∞
			1
			1
			$\frac{\overline{}}{6}$
Пределы	25	0	Предел $\lim_{x\to 2} \frac{3}{4x-8}$ равен:
-			$\lim_{x\to 2} \frac{1}{4x} = 0$
			Предел * * 2 4 х = 6 равен:
			0
		+	∞
		•	1
			0,75
Пределы	26	0	2
пределы		v	$\lim \frac{3}{1}$
			$\lim_{x\to 1} \frac{3}{x-1}$ равен:
			0
		+	∞
			1
			3
Пист	27	Λ	1
Пределы	27	0	lim
			Предел $\lim_{x\to\infty}\frac{4}{x^2+2x}$ равен:
		+	0
			∞
			1
			$\frac{1}{6}$
Продоли	28	0	7
Пределы	40	U	lim
			$\lim_{x \to \frac{1}{2}} \frac{1}{12x - 6}$ Unequel 2 name:
			Предел 2 равен:
			0
		+	∞
			1

			12
Пределы	29	0	r. 5
•			Предел $\lim_{x\to 2} \frac{5}{2-x}$ равен:
			()
		+	∞
			1
			2,5
Пределы	30	0	0
пределы		· ·	Предел $\lim_{x\to 1} \frac{9}{x^2-x}$ равен:
			предел и и давен:
		+	∞ 1
			1
			$\frac{1}{6}$
TT	1	0	702
Производная	1	0	Производная фукнции f(x) = 3x равна:
		1	1
		+	3
			0
TT	1	0	X Y 2 + C
Производная	2	0	Производная фукнции $f(x) = 2x + 6$ равна:
			2x
		,	6
		+	2 8
П		0	~
Производная	3	0	Производная фукнции $f(x) = 4 - x$ равна:
			3
		+	-x -1
Промородиод	4		-1 Производная фукнции f(x) = x равна:
Производная	4	0	производная фукнции п(x) – x равна:
		+	1
		'	2
			X
Производная	5	0	X Производная фукнции $f(x) = x^2$ равна:
производная	3	+	2x
		'	1
			X
			2
Производная	6	0	Производная фукнции $f(x) = x^3$ равна:
производная	0	U	х
			3x
			3
		+	$3x^2$
Производная	7	0	Производная фукнции f(x) = 4sinx равна:
производная		U	-4cosx
			0
		+	4cosx
		'	sinx
			ына

Производная	8	0	Производная фукнции f(x) = cosx + 2 равна:
			$\sin x + 2$
		+	-sinx
			cosx
			$-\sin x + 2$
Производная	9	0	Производная фукнции $f(x) = 3 - \sin x$ равна:
			-cosx
			-sinx
		+	$3 - \cos x$
			$3 + \cos x$
Производная	10	0	Производная фукнции $f(x) = x + 3$ равна:
			4
			2x+3
		+	1
			x+3
Производная	11	0	Производная фукнции $f(x) = 5x - 4$ равна:
			5x
			1
			0
		+	5
Производная	12	0	Производная фукнции $f(x) = 7 - 2x$ равна:
			-2x
			5
		+	-2
			X
Производная	13	0	Производная фукнции f(x) = 4x равна:
•			1
		+	4
			0
			X
Производная	14	0	Производная фукнции $f(x) = x^3 - 1$ равна:
1		+	$3x^2$
			X
			3x-1
			x-1
Произродиод	15	0	
Производная	13	U	Производная фукнции $f(x) = x^3 + x^2$ равна:
			$2x+x^2$
		+	$2x+3x^2$
			$x+x^2$
			$x+3x^2$
Производная	16	0	Производная фукнции f(x) = 6cos x равна:
_			-sin x
			0
		+	-6sin x
			6sin x
Производная	17	0	Производная фукнции f(x) = -3 sin x равна:
, ,			3cos x
		+	-3cos x
			cos x
			0
			1

Производная	18	0	Производная фукнции $f(x) = \sin x + 6$ равна:
,			$\cos x + 6$
		+	cos x
			−cos x
			$-\cos x + 6$
Производная	19	0	Производная фукнции $y = e^{2x+1}$. равна:
•		+	$2e^{2x+1}$
			$e^{2x+1} + 2e^{2x+1}$
			e^{2x+1}
			$e^{2x+1}+e$
Производная	20	0	Производная фукнции $y = 2^x + 3^x + 4^x$ равна:
		+	$2^{x} \ln 2 + 3^{x} \ln 3 + 4^{x} \ln 4$
			$\frac{2^x}{ln^2} + \frac{3^x}{ln^3} + \frac{4^x}{ln^4}$
			ln2
			9
π	21	Δ.	9x
Производная	21	0	Производная фукнции $y = \ln(x^2 + 1)$ равна:
		+	2A m2 + 1
			$\frac{2x}{x^2+1}$ $2x(x^2+1)$ $\frac{x}{x^2+1}$
			$\frac{2\lambda(\lambda+1)}{\chi}$
			$\sqrt{x^2+1}$
			$\begin{array}{c} x^2 + 1 \\ x(x^2 + 1) \end{array}$
Производная	22	0	Производная фукнции y = xlnx равна:
		+	lnx + 1
			lnx
			$\ln x + \frac{1}{r}$
			1
Произродноя	23	0	Производная фукнции $y = x^2 e^x$ равна:
Производная	23	U	$2x^2$
			$2x$ $2xe^x$
			$x^2 + 2xe^x$
		+	$(x^2 + 2x)e^x$
Произродиод	24	0	
Производная	24	U	Значение производной функции $y = \frac{x^2 + x + 1}{x^2 + 1}$ в точке
			графика с абсциссой х = 1 равно:
			1
			-1
		+	0
			4
Производная	25	0	Значение производной функции $y = 5x^4 - \sqrt{2x}$ в
			точке графика с абсциссой х = 1/2 равно:
			1
		+	1,5
			-1
			-1.5
Производная	26	0	Значение производной функции y = sin3x +1 в
			точке графика с абсциссой $x = \pi/2$ равно:
			3
			1
			-1
L			

		+	0
Производная	27	0	
1 ''			Производная функции $y = 4x^3$ равна:
		+	$12x^2$
			12x
			$4x^2$
	•		12x ³
Производная	28	0	Производная функции $y = 6x - 11$. равна:
			-5
	+		11 6
			6x
Производная	29	0	
производная	29	U	$y = \frac{x-1}{x}$ равна:
			Производная функции х равна:
			$-\frac{1}{x^2}$ $\frac{x-1}{x^2}$
			x-1
			$\frac{n}{r^2}$
			$\frac{x}{2x+1}$
			$\frac{2N+1}{r^2}$
		+	1
		·	$\frac{1}{x^2}$
Произродина	30	0	
Производная	30	U	Производная функции $y = x \sin x$ равна:
			$\sin x - x \cos x$
		+	$\sin x + x \cos x$
			$\cos x$
			$x + x \cos x$
Производная	31	0	Производная функции
			$y = x^2 + \sin x$ в точке $x_0 = \pi$ равна:
			π^2-1
			$2\pi+1$
		+	$2\pi-1$
			2π
Производная	32	0	$y = \frac{x^4}{2} - \frac{3x^2}{2} + 2x$
			$y = \frac{1}{2} - \frac{1}{2} + 2x$ В точке
			$x_0=2$ равна:
			10
		+	12
			8
			6
Производная	33	0	Производная функции $y = \sin(3x+2)$ равна:
1			$\cos(3x+2)$
			$\cos(3x+2)$ $-3\cos(3x+2)$
1	1		$1 - 3\cos(3x + 7)$

		+	2000(2012)
		,	$3\cos(3x+2)$
			$-\cos(3x+2)$
Производная	34	0	Производная функции $y = 3x^2 - 12\sqrt{x}$ в точке $x_o = 4$ равна:
		+	21
			24
			0
Производная	35	0	3,5
Производная	33	U	Производная функции $y = \frac{1}{2}tg(4x - \pi) + \frac{\pi}{4}$ в точке
		-	$x_0 = \frac{\pi}{4}$ pabha:
		+	2
			$\frac{\pi}{4}$
			4
			$\frac{\pi}{2}$
Проузродуюя	36	0	
Производная	30	U	Производная функции $y = x^2 \cos x$ равна:
			$2x\sin x$
			$-2x\sin x$
			$2x\cos x + x^2\sin x$
		+	$2x\cos x - x^2\sin x$
Производная	37	0	$y = \frac{1}{3}x^6$ Производная функции равна:
			$2x^6$
		+	$2x^5$
			$\frac{1}{3}x^5$
			$6x^5$
Производная	38	0	Производная функции $y = 12 - 5x$ равна:
			12
			-5
		+	-5x
Производная	39	0	$y = \frac{x+3}{x}$
			производная функции и правна:
			$\frac{3}{x^2}$
			$\frac{3}{x^2}$ $\frac{2x-3}{x^2}$

		+	
		Т	$-\frac{3}{2}$
			$-\frac{1}{x^2}$ $-\frac{3}{x^2}$
			$-\frac{3}{2}$
			$\frac{-x}{x}$
Производная	40	0	Производная функции $y = x \cos x$ равна:
		+	$\cos x - x \sin x$
			$\cos x + x \sin x$
			$-\sin x$
			$x - \sin x$
Производная	41	0	Произродноя функции
F			$y = x^2 + \cos x$ в точке $x_0 = \frac{\pi}{2}$ равна:
			$y = x^2 + \cos x$ B TO4Ke $x_0 = \frac{\pi}{2}$
			2 равна:
			π^2-1
			$\pi+1$
			π_{-1}
			$\left(\frac{1}{2}\right)^{-1}$
		+	$\frac{\pi}{2} - 1$ $\pi - 1$
Производная	42	0	
			$y = \frac{x^3}{3} - \frac{5x^2}{2} + 3x$
			производная функции
			$x_0=2$ равна:
		+	13 3
			8
			27
Производная	43	0	
производная	10		Производная функции $y = \cos(5x-2)$ равна:
			$-2\sin(5x-2)$
		+	
		'	$-5\sin(5x-2)$
			$5\sin(5x-2)$
			$\sin(5x-2)$
Производная	44	0	3 — 1
			$y = \frac{3}{x} - \sqrt{x}$ В точке $x_0 = \frac{1}{4}$
			10
			равна: -47
		+	-49
			47
			11,5
Производная	45	0	Производная функции $y = 1 + ctg(2x + \pi)$ в точке
			$x_0 = -\frac{\pi}{4}$ pabha:
			равна. 2
			-1
	1		

		+	-2
			1
			$\left -\frac{1}{2} \right $
Производная	46	0	Производная функции $y = x^2 \sin x$ равна:
			$2x\cos x$
			$2x\sin x - x^2\cos x$
		+	$2x\sin x + x^2\cos x$
			$-2x\cos x$
Применение	1	0	Критическими точками функции
производной к исследованию функций			$f(x) = -\frac{x^3}{3} + \frac{x^2}{2} + 2x - 3$ являются:
		+	2;-1 1;-2
			-3;1
			-2;3
Применение	2	0	Экстремумом функции $y = 2x^2 - 4x - 6$ является
производной к исследованию функций			точка:
		+	(1;-8)
			(-1; 0)
			(1;0)
			(3; 0)
Применение производной к исследованию	3	0	Экстремумами функции $y = 3x^3 - 9x - 6$ являются точки:
функций		+	(-1; 0); (1; -12)
		'	(-1; 0); (1; -12) (-1; 0); (2; 0)
			(3; 0); (-1; 0)
			(1; 0); (-2; 0)
Применение	4	0	Критическими точками функции
производной к			$f(x) = -\frac{x^3}{3} - \frac{x^2}{4} + 3x - 2$ являются:
исследованию			$f(x) = -\frac{3}{3} - \frac{4}{4} + 3x - 2$ являются:
функций			1.2
		+	-1; 3
			-2; 1,5 -1,5; 1
			0,5; 2
Применение	5	0	Точкой экстремума функции $f(x)=1,5x^4+3x^3$
производной к			
исследованию			является:
функций			
			$x_{\text{max}} = -1.5$
			$x_{\min} = 0$
		+	$x_{\min} = -1.5$
·		Ī	min /

			$x_{\text{max}} = 1.5$
Применение производной к исследованию функций	6	0	Промежутками возрастания функции $f(x) = x^3 + 9x^2 - 4$ являются:
			$[-6;0];[6;+\infty)$
		+	$(-\infty;-6];[0;+\infty)$
			[0;6]; [7;8]
			$(-\infty;0]$, $[6;+\infty)$
Применение производной к исследованию функций	7	0	Точка максимума функции $f(x) = -x^3 + 3x$ и её максимум равны:
		+	x = 1; f(1) = 2
			x = -1; f(-1) = 2
			x=1; f(1)=-2
			x = -1; f(-1) = -2
Применение производной к исследованию функций	8	0	Промежутком возрастания функции $f(x) = -x^3 + 3x$ является:
4 <i>y</i>			$(-\infty;-1)$
			$(-\infty;1]$
			(1;+∞)
		+	[-1;1]
Применение производной к исследованию функций	9	0	Экстремумом функции $y = 6x^2 - 12x + 14$ является точка:
,			(1; 0)
			(1,5; -1,75)
		+	(1; 8)
Применение	10	0	$(8; 1)$ Экстремумами функции $y = 4x^3 - 12x - 8$ являются
производной к исследованию функций		v	экстремумами функции $y = 4x - 12x - 8$ являются точки:
			(-1; 0); (2; 0)
		+	(-1; 0), (1; -16)
			(1,5; 0); (1; 0) (1; 0), (-2; 0)
Применение производной к исследованию функций	11	0	Критическая точка функции $f(x) = 3x^3 - 3x^2 + x - 15$ равна:
		+	$\frac{1}{3}$

			3
			$\left -\frac{1}{3} \right $
			-3
Применение	12	0	
производной к	12	U	Точкой минимума функции $f(x) = 0.5x^4 - 2x^3$
производной к исследованию			является:
функций			
функции			$x_{\min} = 0$
			$x_{\min} = 1$
		+	$x_{\min} = 3$
			$x_{\min} = -3$
Применение	13	0	Промежутком убывания функции
производной к			$f(x) = x^3 - 6x^2 + 5$ является:
исследованию			является:
функций			
		+	[0;4]
			$(-\infty;0,25)$
			(-0,25; 0,25)
			(0;4)
Применение	14	0	
производной к	1.	U	Точка минимума функции $f(x) = x^3 - 3x$ и её
исследованию			минимум равны:
функций			
			x = 1; f(1) = 2
			x = -1; f(-1) = 2
		+	x = 1; f(1) = -2
			x = -1; $f(-1) = -2$
Применение	15	0	Промежутком убывания функции $f(x) = x^3 - 3x$
производной к		,	Промежутком убывания функции $J(x) = x$
исследованию			является:
функций			
			$(-\infty;-1)$
			$(-\infty;-1]$
			$(1;+\infty)$
		-	
		+	[-1;1].
Неопределенный	1	0	Вычислить
интеграл			Jxsin3xdx:
			$-\cos 3x/3$
			$\int x(2\ln x) / x dx + C$
		_1	
Помисто натиги	2	+ 0	$x \ln^2 x - 2 \int \ln x dx + C$
Неопределенный	2	U	Вычислить неопределенный
интеграл			интеграл $\int (5x+12)dx$ $\int (5x+12)dx = \frac{5x^2}{2} + 12x + C$
			интеграл <i>Ј</i>
		+	$\int (5x+12)dx = \frac{5x^2}{2} + 12x + C$
			J

			$\int p^{n+1}$
			$\int x^n dx = \frac{x^{n+1}}{n+1} + C$
			0.01
			16,5
Неопределенный	3	0	ſ
интеграл			$\int x^5 dx$
- milei puil			бычислить неопределенный интеграл <i>у</i>
			Вычислить неопределенный интеграл $\int (5x+12)dx = \frac{5x^2}{2} + 12x + C$
			$\frac{J}{\ln^2 x - 2 \ln x} dx + C$
			0
		+	
			$\int x^5 dx = \frac{x^6}{6} + C$
			2
			$2\frac{2}{3}$
Неопределенный	4	0	3
интеграл	•		
mirer pari			Найти значение первообразной функции $y = \sin^2 3x$
			, график которой проходит через точку M ($\frac{\pi}{4}$;4) .
			, график которой проходит через точку М (4 .
			5
			2
		+	3
			4
Неопределенный	5	0	Общий вид первообразных для функции $f(x) = 2(2x + 5)^4$ имеет вид:
интеграл	-		$f(x) = 2(2x + 5)^T$ имеет вид:
			$\frac{1}{2}$
			$\frac{5}{5}(2x+5)^5 + C$ $\frac{2}{5}(2x+5)^5 + C$ $\frac{4}{5}(2x+5)^5 + C$
		+	$\frac{2}{2}$
			$5(2x+5)^5+C$
			4
			$ 5 (2x + 5)^5 + C; 4(2x + 5)^3 + C $
Неопределенный	6	0	Общий вид первообразных для функции $y = e^{2x}$
интеграл			имеет вид:
•			1
			$-\frac{1}{2}e^{2x}+C$
			$2e^{2x} + C$
			1
			$\frac{1}{2}e^{2x} + C$
		+	$2e^{2x} + C$ $2e^{2x} + C$
Наопроположимий	7	0	Общий вид первообразных для функции
Неопределенный интеграл	'	"	оощии вид первоооразных для функции $f(x) = \sin^4 x$ имеет вид:
mitti pavi	1		3 1 1
			$\frac{1}{8} = \frac{1}{4} = \frac{1}{32} = $
	1		$-\frac{1}{8}x + \frac{1}{4}\sin 2x - \frac{32}{32}\sin 4x + C$
		+	$\left \begin{array}{ccc} \frac{3}{0} & \frac{1}{4} & \frac{1}{22} \end{array}\right $
			$\frac{3}{8} \frac{1}{x} - \frac{1}{4} \sin 2x + \frac{1}{32} \sin 4x + C$ $\frac{1}{3} \frac{1}{4} \sin 2x + \frac{1}{32} \sin 4x + C$
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			$\frac{7}{2}$ x - $\frac{7}{4}$ sin2x - $\frac{32}{32}$ sinx + C
	•		·

			3 1 1
			$\frac{8}{8}$ y + $\frac{7}{4}$ siny + $\frac{32}{32}$ sin2y + C
Неопределенный	8	0	$\frac{3}{8} \frac{1}{x} + \frac{1}{4} \frac{1}{\sin x} + \frac{1}{32} \frac{1}{\sin 2x} + C$ Найдите общий вид первообразных $F(x)$ для
интеграл			функции $f(x) = \sqrt{2x-1}$
_			ϕ ункции $I(x) = \sqrt{2} - 1$
			$\frac{2(2x-1)\sqrt{2x-1}}{2} + C$
		+	$\frac{3}{(2-1)\sqrt{2-1}}$
		'	$\frac{2(2x-1)\sqrt{2x-1}}{3} + C$ $\frac{(2x-1)\sqrt{2x-1}}{3} + C$ $\frac{4(2x-1)\sqrt{2x-1}}{3} + C$
			4(2:: 1) \(\sqrt{2:: 1} \)
			$\frac{4(2x-1)\sqrt{2x-1}}{2} + C$
			$\frac{1}{3\sqrt{2x-1}} + C$
			$\frac{1}{3\sqrt{2x-1}} + C$
Неопределенный	9	0	Найти первообразную функции у = x² -2x - 3,
интеграл			график которой проходит через точку (-1; 3)
		+	$F(x) = x^3/3 - x^2 - 3x + 4/3$
			$F(x) = x^2/3 - x^2 - 3x + 4/3$
			$F(x) = x^3 / 3 - x^3 - 3x + 4/3$ $F(x) = x^3 / 2 - x^2 - 3x + 4/3.$
Поонионононии и	10	0	
Неопределенный интеграл	10	U	Первообразная функции $f(x) = 7x^6 - 7e^x$,
			удовлетворяющая условию $F(0) = 1$, равна: $F(x) = 7x^7 - 7e^x + 8$
			` '
			$F(x) = x^7 - 7e^x + 1$
			$F(x) = 7x^7 - 7e^x + 1$
		+	$F(x) = x^7 - 7e^x + 8$
Определенный	1	0	2
интеграл и его			Интеграл $\int_{0}^{2} x^3 dx$ равен:
применение		1	4
		+	8
			2
			6
Определенный	2	0	4
интеграл и его			Интеграл $\int 2x^2 dx$ равен:
применение			1 42
		+	42
			$6\frac{1}{3}$ $4,5$
			4.5
			9
Определенный	3	0	1 (2)-
интеграл и его			Интеграл $\int (x^2 + 4x - 1) dx$ равен:
применение			0
		+	$1\frac{1}{3}$
			$-2\frac{2}{3}$
			20
1			

			9
Определенный	4	0	<u>π</u>
интеграл и его			4
применение			Интеграл $\int_{0}^{\infty} \cos x dx$ равен:
-			0
			$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$
			2
		+	$\sqrt{2}$
			$\overline{2}$
			1
			$\frac{1}{2}$
			$\sqrt{2}$
0		0	
Определенный	5	U	$\frac{\pi}{2}$
интеграл и его			Интеграл $\int \sin x dx$ равен:
применение			$\frac{\pi}{3}$
			$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$
			2
			$\sqrt{2}$
			$\overline{2}$
		+	1
			$\frac{1}{2}$
			$\sqrt{2}$
Определенный	6	0	Интеграл $\int_{0}^{2} x^{4} dx$ равен:
интеграл и его			Three past J. an pasen.
применение		1	1
		+	$6\frac{1}{5}$
			$-1\frac{1}{-1}$
			$-1\frac{1}{4}$
			$\frac{1}{2}$
			$\sqrt{2}$
Определенный	7	0	0
интеграл и его			Интеграл $\int_{0}^{\infty} (x^3 + 2x) dx$ равен:
применение			-1
-			₆ 1
			$6\frac{1}{5}$
		+	
			$-1\frac{1}{4}$
			1
			$\frac{1}{2}$
0		•	$\sqrt{2}$
Определенный	8	0	Вычислите площадь фигуры, ограниченной
интеграл и его			линиями $y = \sqrt{x}, y = 1, x = 4$
применение			• , • ,

			$\left[\begin{array}{c} \frac{2}{73} \end{array}\right]$
			7 3
		+	$\frac{2}{1^{\frac{2}{3}}}$
			1 3
		<u> </u>	
			$\frac{2}{3}$
			3
			3
Определенный	9	0	Вычислить площадь фигуры, ограниченной
интеграл и его			линиями: $y=2^x$; $y=2^{x/2}$; $x=2$
применение			
			15
		+	1/ln2
		· ·	1/ln12
			1/ln20
Omnodovave	10		
Определенный	10	0	Вычислите площадь фигуры, ограниченной
интеграл и его			линиями $y=x^3+1$, $y=0$, $x=0$
применение			
		+	3/4
			3/8
			3/14
			нет правильного ответа
Определенный	11	0	Вычислите площадь фигуры, ограниченной
интеграл и его			линиями $y=1+2\sin x$, $y=0$, $x=0$, $x=\pi/2$:
применение			
•			$\pi/2 + 4$
			$\pi/3 + 2$
		+	$\pi/2 + 2$
			0.5
Определенный	12	0	Вычислите площадь фигуры, ограниченной
интеграл и его	12		линиями $y = 4 - x^2$, $y = 0$
применение			линими у ч-х, у о
применение			10,5
		+	10 2/3
		<u> </u>	12
			18
Определенный	13	0	
	15	U	Вычислите площадь фигуры, ограниченной
интеграл и его		U	Вычислите площадь фигуры, ограниченной линиями y=1+ 0,5cos x, y=0, x=-п/2, x=n/2
интеграл и его применение		U	линиями $y=1+0.5\cos x$, $y=0$, $x=-\pi/2$, $x=\pi/2$
-			линиями y=1+ 0,5cos x, y=0, x=-п/2, x=п/2 п +0,1 \approx 4,14
-		+	линиями y=1+ 0,5cos x, y=0, x=-п/2, x=п/2 $\pi +0,1\approx 4,14$ $\pi +1\approx 4,14$
-			линиями y=1+ 0,5cos x, y=0, x=-п/2, x=п/2 $\pi +0,1\approx 4,14$ $\pi +1\approx 4,14$ 0,1
-			линиями y=1+ 0,5cos x, y=0, x=-п/2, x=п/2 $\pi +0,1\approx 4,14$ $\pi +1\approx 4,14$
-	14		линиями y=1+ 0,5cos x, y=0, x=-п/2, x=п/2 $ \begin{array}{c} \pi + 0,1 \approx 4,14 \\ \pi + 1 \approx 4,14 \\ 0,1 \\ 0,05 \\ \\ \textbf{Вычислить площадь фигуры, ограниченной} \end{array} $
применение		+	линиями y=1+ 0,5cos x, y=0, x=-п/2, x=п/2 $ \pi +0,1\approx 4,14 \\ \pi +1\approx 4,14 \\ 0,1 \\ 0,05 $
Определенный		+	линиями y=1+ 0,5cos x, y=0, x=-п/2, x=п/2 $ \begin{array}{c} \pi + 0,1 \approx 4,14 \\ \pi + 1 \approx 4,14 \\ 0,1 \\ 0,05 \\ \\ \textbf{Вычислить площадь фигуры, ограниченной} \end{array} $
применение Определенный интеграл и его		+	линиями y=1+ 0,5cos x, y=0, x=-п/2, x=п/2 $ \begin{array}{c} \pi + 0,1 \approx 4,14 \\ \pi + 1 \approx 4,14 \\ 0,1 \\ 0,05 \\ \\ \textbf{Вычислить площадь фигуры, ограниченной линиями y=x^2, y=} \\ \hline $
применение Определенный интеграл и его		+	линиями y=1+ 0,5cos x, y=0, x=-п/2, x=п/2 $ \begin{array}{c} \pi + 0,1 \approx 4,14 \\ \pi + 1 \approx 4,14 \\ 0,1 \\ 0,05 \\ \textbf{Вычислить площадь фигуры, ограниченной линиями y=x^2, y=\sqrt{x} \end{array} $
применение Определенный интеграл и его		0	линиями y=1+ 0,5cos x, y=0, x=-п/2, x=п/2 $ \begin{array}{c} \pi + 0,1 \approx 4,14 \\ \pi + 1 \approx 4,14 \\ 0,1 \\ 0,05 \\ \hline \textbf{Вычислить площадь фигуры, ограниченной линиями y=x^2, y=\sqrt{x} \end{array} $
применение Определенный интеграл и его		+	линиями y=1+ 0,5cos x, y=0, x=-п/2, x=п/2 $ \begin{array}{c} \pi + 0,1 \approx 4,14 \\ \pi + 1 \approx 4,14 \\ 0,1 \\ 0,05 \\ \textbf{Вычислить площадь фигуры, ограниченной линиями y=x^2, y=\sqrt{x} \end{array} $

Определенный интеграл и его	15	0	Вычислить площадь фигуры, ограниченной линиями $y^2=2x+4$, $x=0$
применение			Jininami y Za 4, a 0
			10,5
			1,73
			0,4
		+	16/3
Определенный	16	0	Найти значение выражения 6S, где S- площадь
интеграл и его применение			фигуры, ограниченной линиями y= -x ² +5x-5 и y=1.
применение		+	yх тэх-э и y-1.
		<u>'</u>	14
			16
			1,5
Определенный	17	0	Найдите площадь фигуры, ограниченной
интеграл и его			кривыми $y = 1 - x^2$ и $y = 0$
применение			5
			$\frac{5}{3}$
			7
			$\frac{7}{3}$
			10
			$\frac{10}{3}$
		+	4
		'	$\left(\frac{7}{3}\right)$
Определенный	18	0	Вычислите площадь фигуры, ограниченной
интеграл и его	10	v	линиями $y = x^3$, $y = 8$, $x = 1$
применение			• /• /
			1
			12 4
			3
			$\frac{3}{3^{4}}$
			3
			$\frac{3}{74}$
		+	1
			$4\overline{4}$
Комплексные	1	0	4i-2
числа		-	Комплексное число $\frac{n-2}{1-i}$ равно:
		+	-3 + i
		•	-i
			2-4i
			1+4i
Комплексные	2	0	$\frac{1-i}{2}$.
числа			Комплексное число $\frac{1+i}{1+i}$ равно:
			-3 + i
		+	-i
			2-4i

			1+4i
Комплексные	3	0	Сумма комплексных чисел $z_1 = 0.5 - 3.2i$ и
числа			Сумма комплексных чисел 1 и и и и и и и и и и и и и и и и и и
			$z_2 = 1.5 - 0.8i$ pabha:
			-3 + i
			-i
		+	2-4i
			1+4i
Комплексные	4	0	Корни уравнения $x^2 - 2x + 5 = 0$ на множестве
числа			комплексных чисел равны:
		+	$1 \pm 2i$
			1,3.
			$-\frac{1}{5} \pm \frac{3}{5}i$
			$-2 \pm i$
			-1 ± i
Комплексные	5	0	Корни уравнения $2,5x^2 + x + 1 = 0$ на множестве
числа			комплексных чисел равны:
11100100			1 ± 2i
		+	
			$-\frac{1}{5} \pm \frac{3}{5}i$
			$-2 \pm i$
			-1 ± i
Комплексные	6	0	
числа	U	U	Корни уравнения $x^2 + 4x + 5 = 0$ на множестве
числа			комплексных чисел равны:
			$1 \pm 2i$
			$-\frac{1}{5} \pm \frac{3}{5}i$
		+	-2 ± i
			$-1 \pm i$
I Construction and the second	7	0	2 . 2 . 5 . 0
Комплексные	'	U	Корни уравнения $x^2 + 2x + 5 = 0$ на множестве
числа			комплексных чисел равны:
		+	$1 \pm 2i$
			$-\frac{1}{2} \pm \frac{3}{2}i$
			$-\frac{1}{5} \pm \frac{3}{5}i$
			-2 ± i
			-1 ± i
Комплексные	8	0	Комплексное число (-5 + 2i) – (5 + 2i) равно:
числа		1	10
		+	-10
			-12 + 18i
			-21 – 42i
V 0.5 W W 0.2222	0	Λ	18 – 6i
Комплексные	9	0	Комплексное число (6 + 4i)3i равно:
числа			10
			-10
		+	-12 + 18i
			-21 – 42i
			18 – 6i

Комплексные	10	0	Произведение комплексных чисел $z_1 = 5 - 2i$ и
числа			$z_2 = 1 - 8i$ равно:
			-10
			-12 + 18i
		+	-21 – 42i
			18 – 6i
Элементы теории	1	0	Уравнение регрессии имеет вид -Y=5,1-1,7*x. Оно
вероятностей и			показывает, что при увеличении Х на 1 единицу
математической			своего измерения Y в среднем:
статистики			
		+	Уменьшится на 1,7 единиц своего измерения
			Увеличится на 1,7 единиц своего измерения
			Уменьшится на 3,4 единиц своего измерения
			нет правильного ответа
Элементы теории	2	0	Сумма этих двух событий – достоверное событие,
вероятностей и			произведение этих двух событий - невозможное
математической			событие. Эти два события являются:
статистики			_
			достоверными событиями
			невозможными событиями
			достоверным и возможны событиями
		+	Противоположными событиями
Элементы теории	3		Случайная величина Y=4х+2, при этом
вероятностей и			математическое ожидание Х равно3.
математической			Математическое ожидание случайной величины Ү
статистики			равно:
			28
			0
		+	14
			-14
Элементы теории	4	0	Случайная величина Y=3х+5, при этом дисперсия
вероятностей и			Х равна 2 .Дисперсия случайной величины Ү
математической			равна:
статистики			
			36
		+	18
			-18
			0
Элементы теории	5	0	Парный коэффициент корреляции изменяется в
вероятностей и			пределах:
математической			
статистики			
		+	$-1 \le p_{zy} \le 1$,
			$-10 \le p_{\text{ZV}} \le 1$
			$-100 \le p_{\text{ZV}} \le 1$
			$-1 \le p_{zy} \le 1$, $-10 \le p_{zy} \le 1$, $-100 \le p_{zy} \le 1$, $-10 \le p_{zy} \le 1$ 0
Элементы теории	6	0	Парный коэффициент корреляции между
вероятностей и			признаками равен 1. Это означает:

математической			
статистики			
CIUINCINKII			Отсутствие функциональной связи
		+	Наличие функциональной связи
		,	Слабая функциональная связь
			Сильная функциональная связь
Элементы теории	7	0	Парный коэффициент корреляции между
вероятностей и	,	U	признаками равен -1. Это означает:
математической статистики			
			Наличие положительной линейной функциональной связи
		+	Наличие отрицательной линейной функциональной
			СВЯЗИ
			отсутствие функциональной связи
			нет верного ответа
Элементы теории вероятностей и математической статистики	8	0	Оценкой математического ожидания является:
Статистики			Средняя гармоническая –Х,
		+	Средняя арифметическая – Х,
		'	медиана
2	9	0	мода
Элементы теории	9	U	Оценка является несмещенной, если:
вероятностей и математической			
статистики			Математическое ожидание оценки больше значения
			оцениваемого параметра
			Математическое ожидание оценки меньше значения
		+	оцениваемого параметра
			Математическое ожидание оценки равно значению
			оцениваемого параметра
2	10	0	нет верного ответа
Элементы теории вероятностей и математической	10	U	Абонент забыл последнюю цифру номера телефона своего знакомого и набрал ее наугад. Вероятность того, что он набрал правильный номер, равна:
статистики			
			1/100
			1/5
		+	1/10
			1/2
Элементы теории	11	0	Вероятность того, что студент сдаст каждые из 3-х
вероятностей и			экзаменов сессии на отлично равна
математической			соответственно 0,4;0,5;0,1. Получение отличных
статистики			оценок на этих экзаменах событие независимое.
			Вероятность того, что студент сдаст на отлично
			все 3 экзамена, равна:
			0,2
		+	0,02

			0,5
			0,05
Элементы теории	12	0	Вероятность того, что в страховую компанию в
вероятностей и			течение года обратится с иском о возмещении
математической			ущерба первый клиент, равна 0,2. второй -0,1.
статистики			Обращение клиентов события независимые.
Clulincinkii			Вероятность того, что в течение года в страховую
			компанию обратится хотя бы один из этих
		1	клиентов, равна:
		+	0,28
			0,56
			0,01
			0,07
Элементы теории	13	0	Вероятность того, что в страховую компанию в
вероятностей и			течение года обратится с иском о возмещении
математической			ущерба первый клиент, равна0,2. второй -0,1.
статистики			Обращение клиентов события независимые.
ciui inciinkii			Вероятность того, что в течение года в страховую
			компанию не обратится ни один из этих клиентов,
			равна:
		+	0,72
			· ·
			0,56
			0,01
			0,07
Элементы теории	14	0	В коробке 4 стандартных и 2 бракованных детали.
вероятностей и			Подряд вынимают 2 детали, при этом не
математической			возвращают их обратно в коробку. Вероятность
статистики			того, что обе вынутые детали бракованные,
			равна:
			1/30
			1/45
		+	1/15
		'	0.05
<u>n</u>	1.5	•	
Элементы теории	15	0	Вероятность достоверного события, равна:
вероятностей и			
математической			
статистики			
			0.5
			1/2
			0.01
		+	1
Элементы теории	16	0	В коробке 4 стандартных и 2 бракованных детали.
вероятностей и			Последовательно по одной вынимают 2 детали,
математической			при этом каждый раз возвращают их обратно в
			коробку. Вероятность того, что обе вынутые
статистики			
			детали бракованные, равна:
		+	1/9
			1/3
			1/5
	i		1/4

Элементы теории	17	0	Вероятность случайного события -это:
вероятностей и			
математической			
статистики			Hyafiaa wyana am 0 ya 10
		+	Любое число от 0 до 10
		+	Любое число от 0 до 1 Любое число от 1 до 10
			Любое число от 1 до 10 Любое число от (-1) до 1
Элементы теории	18	0	Вероятность невозможного события равна:
вероятностей и	10	U	вероятность невозможного сооытия равна.
математической			
статистики			
CTUTHCTHAN		+	0
			Любое число от 0 до 1
			Любое число от 1 до 10
			Любое число от (-1) до 1
Элементы теории	19	0	Дисперсия постоянной величины равна:
вероятностей и			The second secon
математической			
статистики			
			1
			120
		+	0
			∞
Элементы теории	20	0	Если 2 события не могут произойти одновременно,
вероятностей и			то они называются:
математической			
статистики			
			совместимыми
		+	несовместимыми
			противоположными
			нет правильного ответа
Элементы теории	21	0	Значимость парного коэффициента корреляции
вероятностей и			проверяется с помощью:
математической			
статистики	-		Распространения Фишера – Нейгтса
	-		Распространения Фишера – неигтса Распространения Стьюдента
		+	оба ответа верны
		1-	оба ответа верны оба ответа неверны
Элементы теории	22	0	Институт получает контрольные работы
вероятностей и		U	студентов их 3-х городов: А,В,С. Вероятность
математической			получения контрольной работы из города А-0,7, из
статистики			города В-0,2. Вероятность того, что очередной
- CIWINGI MAN			пакет будет получен из города С, равна:
			0,01
			0,001
		+	0,1
Элементы теории	23	0	Из колоды 52 карт наудачу вытягивается одна.
вероятностей и			Вероятность того, что эта карта-король, равна:

математической			
статистики			
			1/52
			1/9
			0.5
		+	1/13
Элементы теории	24	0	Интеграл от плотности распределения f(x)
вероятностей и			
математической			$\int_{0}^{\infty} f(x)dx =$
статистики			непрерывной случайной величины -∞
			равен:
			0,1
			10
		+	1
			0,01
Элементы теории	25	0	Коэффициент детерминации- это:
вероятностей и			
математической			
статистики			
		+	Квадрат выборочного коэффициента корреляции
			Квадратный корень из выборочного коэффициента
			корреляции
			0.01
			нет правильного ответа
Элементы теории	26	0	Математическое ожидание постоянной величины
вероятностей и			равно:
математической			
статистики			
			противоположной величине
		+	этой величине
			квадрату этой величины
			квадратному корню из этой величин
Элементы теории	27	0	На 5 карточках разрезной азбуки написаны буквы
вероятностей и			О, П, Р, С, Т. Перемешанные карточки
математической			вынимаются по одной и располагаются в одну
статистики			линию. Вероятность прочесть слово «СПОРТ»
			равна:
		+	1/5
			1/15
			1/25
			1/500
Элементы теории	28	0	На основании 20 наблюдений выяснено, что
вероятностей и			парный коэффициент корреляции Ryx=0,8.Доля
математической			дисперсии случайной величины У обусловленная
статистики			влиянием неучтенных факторов, равна:
CIAINCINKI		1	1.0.10
Ciaincinkh			0,18
CTATHCIHAN		+	0,36
CTATHCTHKH		+	

Элементы теории вероятностей и математической статистики	29	0	Как в теории вероятностей называется всякий факт, который в результате опыта может либо произойти, либо не произойти?
		+	событие
			испытание
			исследование
			величина
Элементы теории вероятностей и математической статистики	30	0	Как называется всякое соотношение, связывающее возможные значения случайной величины и соответствующие им вероятности?
			ряд распределения
		+	закон распределения
			функциональная связь
	1		дисперсия
Элементы теории вероятностей и математической статистики	31	0	Как называется случайная величина, которая принимает значения из множества {0;0,1;0,2;;1,0}
			дискретная
			постоянная
		+	непрерывная
			переменная
Элементы теории вероятностей и математической статистики	32	0	Вероятность попадания стрелком в цель 0,6. Сделано 30 выстрелов. Определить наивероятнейшее число попаданий.
		+	18
			15
			12
			10
Элементы теории вероятностей и математической статистики	33	0	Произведение двух событий – это:
		+	событие, состоящее в одновременном появлении обоих событий
			общее число появлений этих событий
			событие, состоящее в появление хотя бы одного из событий
			сумма вероятностей этих событий
Элементы теории вероятностей и математической статистики	34	0	Выборка репрезентативна. Это означает, что:
	<u></u>		она полная
			она постоянная
			является частью генеральной совокупности
		+	Она правильно отражает пропорции генеральной совокупности

Элементы теории вероятностей и математической статистики	35	0	Совокупность событий образует полную группу, если:
			все события набора независимы
			если все события попарно несовместны, а их сумма
			равна достоверному событию
			вместе с каждым событием совокупность содержит и
			противоположенное ему событие
		+	сумма вероятностей всех событий набора равна единице
Элементы теории	36	0	События являются несовместными, если:
вероятностей и математической		v	
статистики		+	данные события не могут произойти одновременно
	+	'	сумма вероятностей этих событий равна единице
			вероятность одного события не зависит от того,
			произошло или не произошло другое событие
			вероятность произведения этих событий равна
			произведению их вероятностей
Элементы теории	37	0	Какая оценка параметра называется
вероятностей и математической статистики		v	эффективной?
V1W11V11			ожидание которой не равно оцениваемому параметру
			стремится по вероятности к оцениваемому параметру
		+	имеет наименьшую возможную дисперсию
			ожидание которой равно оцениваемому параметру
Элементы теории	38	0	Для каких двух событий вероятность суммы этих
вероятностей и математической статистики		v	событий равна сумме вероятностей каждого события?
CIUINCINKI		+	несовместных
			произвольных
			зависимых
			независимых
Элементы теории	39	0	Определите вероятность того, что вынув одну
вероятностей и математической статистики			карту из колоды в 36 карт, вы получите валета любой масти.
			1/36
		+	1/9
			1/2
	1		1/4
Элементы теории вероятностей и математической статистики	40	0	Чему равна вероятность того, что при бросании игральной кости выпадет 1, 6 или 4?
			1/24
			1/3

	+	1/2
		нет правильного ответа